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Several highly oxidized diterpenes having a rearranged spon-
gian skeleton have been isolated from marine sponges and
nudibranches.1 Dorid nudibranches are shell-less marine mollusks,
which are believed to have acquired the spongian-related com-
pounds from sponges on which they feed.1 An example of one
such diterpene is macfarlandin E (3, also called aplyviolacene),
which is found in both nudibranches and sponges.2 In 1991
Andersen and co-workers reported the isolation of shahamin K
(1) from the skin extracts of a dorid nudibranchChromodoris
glenieifound in coastal waters of Sri Lanka.3 The gross structure
and relative stereochemistry of1 were secured by NMR studies,
whereas the absolute configuration was not determined.3 The
common structural features of rearranged spongian diterpenes,
exemplified by1-4, are acis-hydroazulene unit and an attached
highly oxidized six-carbon fragment, the latter of which occurs
in a variety of cyclic and bicyclic motifs. Biological properties
of rearranged spongian diterpenes have been little investigated,
although antimicrobial and fish anti-feedant activities have been
documented.2a,4,5 We report herein the first total synthesis of a
rearranged spongian diterpene; this synthesis confirms the relative
and absolute stereochemistry of (+)-shahamin K and introduces
a useful extension of our Prins-pinacol approach for constructing
carbocyclic skeleta.6

Our synthesis plan is outlined in retrosynthetic format in
Scheme 1. Michael addition of cyclopentenone electrophile5 and
cis-hydroazulene enolate6 was envisaged to construct the
challenging C8-C14 σ-bond and relate the stereochemistry of

the two attached rings. Stereocontrol in this pivotal event would
derive from the facial bias of each coupling partner: preferential
reaction of6 from the convexR face and5 from the face opposite
the acetoxymethyl substituent.7 The cis-fused ketone precursor
of 6 was seen to derive from ring-enlarging cyclopentane
annulation of cyclohexyl precursor7.6

The synthesis began with cyclohexanone8,8 which was
transformed torac-9 using an improved version of a procedure
developed earlier (Scheme 2).9 Kinetic resolution ofrac-9 by
reaction with 0.2 equiv of (R)-oxazaborolidine10 and 0.6 equiv
of BH3‚THF at-78 °C provided the easily separable cyclohexa-
none (S)-9 (44% yield, 94% ee) and alcohol11 (49% yield, 79%
ee).10,11 Addition of (E)-1-propenyllithium to (S)-9 at -100 °C,
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followed by silylation of the resulting alcohol withN-(trimethyl-
silyl)imidazole12 gave a single silyl ether7 in high yield.13a

Exposure of7 to 2 equiv of dimethyl(methylthio)sulfonium
tetrafluoroborate (DMTSF)14 at -45 f 0 °C in CH2Cl2 initiated
the Prins-pinacol reaction to producecis-hydroazulene12, a 5:1
mixture ofâ andR sulfide epimers, in 80% yield.15 The structure
of 12was confirmed by oxidation of the majorâ epimer to provide
the crystalline sulfone13.13b The related ring-enlarging cyclo-
pentane annulation of the dimethyl acetal analogue of7 could
not be realized, because Prins cyclization in this case took place
by a 5-exo pathway.16

Installation of the exocyclic methylene was complicated by the
propensity of12 to epimerize under basic conditions. However,
transformation of this intermediate to14 could be accomplished
in 84% yield using a modified Peterson sequence. Oxidation of
14 with m-chloroperoxybenzoic acid (m-CPBA) followed by
oxidative desulfonylation17 of the resulting mixture of epimeric
sulfones provided hydroazulenone15 in 62% overall yield.

Survey experiments established that the cyclopentenone Michael
acceptor had to carry an additional activating group for the C8
quaternary center to be formed efficiently. Using enantiopure
R-sulfonyl ketone5,18 the pivotal union with the thermodynamic
lithium enolate of15 occurred cleanly at-78 °C to deliver a
single adduct16 in 72% yield (Scheme 3). The structure of this
product was confirmed by removal of the sulfone19 to provide
crystalline17.13c

To transform the cyclopentanone side chain to the required
pyranone unit,â-keto sulfone16 was reduced with SmI2 and the
resulting samarium enolate was acetylated at-78 °C with acetic
anhydride in the presence of 4-(N,N-dimethylamino)pyridine
(DMAP) to give enol acetate18 in 88% yield (Scheme 3).
Reduction of the ketone of this intermediate with 1.5 equiv of
(R)-oxazaborolidine1010b and 1.5 equiv of BH3‚THF gave19 in
90% yield (ds>10:1).20 Transformation of the secondary alcohol
of 19 to an acetate followed by chemoselective dihydroxylation
of the enol acetate functionality of20deliveredR-hydroxy ketone
21 in 87% yield. Cleavage of21 with Pb(OAc)4 followed by
reduction of the resulting aldehyde with NaBH4 and lactonization
using the Mukaiyama reagent21 provided (+)-shahamin K (1) in

57% yield from 21. The optical rotation of synthetic1, [R]D

+83.4, compared well with that reported for the natural isolate,
[R]D +84.0, as did all other spectral and analytical properties.

In summary, this study demonstrates that the alkene participant
in a Prins-pinacol construction of a cis-fused carbocycle does not
need to be biased to favor endo-cyclization if the initiating
electrophile is aR-thiocarbenium ion. The enantioselective total
synthesis of (+)-shahamin K was accomplished in 18 linear steps
and 4.2% yield from cyclohexanone8, constituting the first total
synthesis of a rearranged spongian diterpene. Moreover, this
synthesis establishes the absolute sterochemistry of (+)-shahamin
K and defines a strategy that should be useful for preparing other
rearranged spongian diterpenes and their analogues.
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